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Logistics

1. Homework 0 released



Image Transformations

image filtering: change range of image

g(x) = T(f(x))
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image warping: change domain of image

g(x) = f(T(x))

Many slides are adopted from Alyosha Efros and Steve Seitz, among other great people.

See book chapter (Szeliski Sec 2.1.2)
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Image Transformations

T

T

f

f g

g

image filtering: change range of image

g(x) = T(f(x))

image warping: change domain of image

g(x) = f(T(x))
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Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical
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Parametric (global) warping

Transformation T is a coordinate-changing machine:

    p’ = T(p)

What does it mean that T is global?

• Is the same for any point p

• can be described by just a few numbers (parameters)

Let’s represent a linear T as a matrix:

      p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Scaling

Scaling a coordinate means multiplying each of its components by 
a scalar

Uniform scaling means this scalar is the same for all components:

 2
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Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5
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Scaling

Scaling operation:

Or, in matrix form:
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scaling matrix S

What’s inverse of S?
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2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()
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2-D Rotation

x = r cos ()

y = r sin ()

x’ = r cos ( + )

y’ = r sin ( + )



(x, y)

(x’, y’)


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2-D Rotation

x = r cos ()

y = r sin ()

x’ = r cos ( + )

y’ = r sin ( + )

Trig Identity…

x’ = r cos() cos() – r sin() sin()

y’ = r sin() cos() + r cos() sin()



(x, y)

(x’, y’)



12



2-D Rotation

x = r cos ()

y = r sin ()

x’ = r cos ( + )

y’ = r sin ( + )

Trig Identity…

x’ = r cos() cos() – r sin() sin()

y’ = r sin() cos() + r cos() sin()

Substitute…

x’ = x cos() - y sin()

y’ = x sin() + y cos()



(x, y)

(x’, y’)


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2-D Rotation

This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

• x’ is a linear combination of x and y

• y’ is a linear combination of x and y

What is the inverse transformation?

• Rotation by –

• For rotation matrices
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Identity?
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx
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2D Shear?
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Mirror about Y axis?
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2x2 Matrices

What types of transformations can be 

represented with a 2x2 matrix?

2D Translation?

y

x

tyy

txx
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'
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Only linear 2D transformations 

can be represented with a 2x2 matrix

NO!
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All 2D Linear Transformations

Linear transformations are combinations of …

• Scale,

• Rotation,

• Shear, and

• Mirror

Properties of linear transformations:

• Origin maps to origin

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition
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Homogeneous Coordinates

Q: How can we represent translation as a 3x3 

matrix?
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'
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Homogeneous Coordinates

Homogeneous coordinates

• represent coordinates in 2 
dimensions with a 3-vector
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Homogeneous Coordinates

Add a 3rd coordinate to every 2D point

• (x, y, w) represents a point at location (x/w, y/w)

• (x, y, 0) represents a point at infinity

• (0, 0, 0) is not allowed

Convenient 

coordinate system to 

represent many 

useful 

transformations

1 2

1

2
(2,1,1) or (4,2,2) or (6,3,3)

x

y
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Homogeneous Coordinates

Q: How can we represent translation as a 3x3 

matrix?

A: Using the rightmost column:
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Translation

Example of translation
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Basic 2D Transformations

Basic 2D transformations as 3x3 matrices
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Matrix Composition

Transformations can be combined by 

matrix multiplication
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p’   =      T(tx,ty)                 R()              S(sx,sy)        p

Does the order of multiplication matter?
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Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Properties of affine transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition

• Models change of basis

Will the last coordinate w always be 1?
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Projective Transformations

Projective transformations …

• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Origin does not necessarily map to origin

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis
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2D image transformations

These transformations are a nested set of groups

• Closed under composition and inverse is a member 29



D'Arcy Thompson 
http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/darcy.html

 http://en.wikipedia.org/wiki/D'Arcy_Thompson

Importance of shape and structure in 

evolution

Slide by Durand and Freeman

Image Warping in Biology 

30
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Recovering Transformations

What if we know f and g and want to recover the 

transform T?

• e.g. better align images from Project 1

• willing to let user provide correspondences

– How many do we need?

x x’

T(x,y)

y y’

f(x,y) g(x’,y’)

?
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Translation: # correspondences?

How many correspondences needed for translation?

How many Degrees of Freedom?

What is the transformation matrix?

x x’

T(x,y)

y y’

?

















−

−

=

100

'10

'01

yy

xx

pp

pp

M

32



Euclidian: # correspondences?

How many correspondences needed for translation+rotation?

How many DOF?

x x’

T(x,y)

y y’

?
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Affine: # correspondences?

How many correspondences needed for affine?

How many DOF?

x x’

T(x,y)

y y’

?

34



Projective: # correspondences?

How many correspondences needed for projective?

How many DOF?

x x’

T(x,y)

y y’

?
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Example: warping triangles

Given two triangles: ABC and A’B’C’ in 2D (12 numbers) 

Need to find transform T to transfer all pixels from one to 

the other.

What kind of transformation is T?

How can we compute the transformation matrix:

T(x,y)

?
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Image warping

Given a coordinate transform (x’,y’) = T(x,y) and a 

source image f(x,y), how do we compute a 

transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’
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f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location 

           (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’
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f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location 

           (x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)

– Known as “splatting”

– Check out griddata in Matlab
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f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 

           (x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

y’
T-1(x,y)
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f(x,y) g(x’,y’)
x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 

           (x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear, Gaussian, bicubic

– Check out interp2 in Matlab
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Forward vs. inverse warping

Q:  which is better?

A:  usually inverse—eliminates holes
• however, it requires an invertible warp function—not always possible...
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Morphing = Object Averaging

The aim is to find “an average” between two objects
• Not an average of two images of objects…

• …but an image of the average object!

• How can we make a smooth transition in time?

– Do a “weighted average” over time t

How do we know what the average object looks like?
• We haven’t a clue!

• But we can often fake something reasonable

– Usually required user/artist input
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P

Q

v = Q - P

P + 0.5v

=  P + 0.5(Q – P)

=  0.5P + 0.5 Q

P + 1.5v

=  P + 1.5(Q – P)

=  -0.5P + 1.5 Q

(extrapolation)Linear Interpolation

(Affine Combination):

New point aP + bQ,

defined only when a+b = 1

So aP+bQ = aP+(1-a)Q

Averaging Points

P and Q can be anything:

• points on a plane (2D) or in space (3D)

• Colors in RGB or HSV (3D)

• Whole images (m-by-n D)… etc.

What’s the average

of P and Q?
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Idea #1: Cross-Dissolve

Interpolate whole images:

 Imagehalfway = (1-t)*Image1 + t*image2

This is called cross-dissolve in film industry

But what is the images are not aligned?
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Idea #2: Align, then cross-disolve

Align first, then cross-dissolve

• Alignment using global warp – picture still valid
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Global warp not always enough!

What to do?

• Cross-dissolve doesn’t work

• Global alignment doesn’t work

– Cannot be done with a global transformation (e.g. affine)

• Any ideas?

Feature matching!

• Nose to nose, tail to tail, etc.

• This is a local (non-parametric) warp

47



Local (non-parametric) Image Warping 

Need to specify a more detailed warp function

• Global warps were functions of a few (2,4,8) parameters

• Non-parametric warps u(x,y) and v(x,y) can be defined 

independently for every single location x,y!

• Once we know vector field u,v we can easily warp each pixel 

(use backward warping with interpolation)
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Warp specification -- dense

Define vector field to specify a dense warp
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Warp specification - sparse

How can we specify a sparse warp?

How do we go from feature points to pixels?
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Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points

• Same mesh in both images!

• Now we have triangle-to-triangle correspondences

3. Warp each triangle separately from source to 

destination

• How do we warp a triangle?
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(c) Ian Albuquerque Raymundo da Silva
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Warping triangles

Given two triangles: 𝑝1𝑝2𝑝3 and 𝑞1𝑞2𝑞3 in 2D (12 numbers) 

Need to find transform T to transfer all pixels from one to 

the other.

What kind of transformation is T?

How can we compute the transformation matrix:

p = 𝑥, 𝑦
𝑞 = (𝑥’, 𝑦’)

T(x,y)

?
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Triangulations

A triangulation of set of points in the plane is a partition 

of the convex hull to triangles whose vertices are the 

points, and do not contain other points.

There are an exponential number of triangulations of a 

point set.
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Full Morphing Procedure

Morphing procedure: 

 for every t,

1. Find the average shape (the “mean dog”☺)
• local warping

2. Find the average color
• Cross-dissolve the warped images 55



1. Create Average Shape

How do we create an intermediate warp at time t?

• Assume t = [0,1]

• Simple linear interpolation of each feature pair 

– 𝑝 →  𝑞

– 1 − 𝑡 ⋅ 𝑝 + 𝑡 ⋅ 𝑞 for corresponding features p and p’
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2. Create Average Color

Interpolate whole images:

 Imagehalfway = (1-t)*Image + t*image’

cross-dissolve!
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Morphing & matting

Extract foreground first to avoid artifacts in the 

background

Slide by Durand and Freeman
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Amuse-bouche

By Philip Scott Johnson

Music: Bach's Sarabande from Suite for Solo Cello No. 1 in G Major, BWV 1007 performed by Yo-Yo Ma
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Moving Least Square

What is a good local warping function 𝑇 𝑝 → 𝑞?

- Interpolation: need to satisfy control points 𝑇 𝑝𝑖 = 𝑞𝑖

- Smoothness:𝑇 should be smooth; 

- Identity: if 𝑝𝑖 = 𝑞𝑖, 𝑇 should be an identity mapping

Triangulation-based methods: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑇 𝑇 𝑝𝑖 − 𝑞𝑖
2
 for 3 vertices in each triangle

Moving least squares: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑇  𝑤𝑖 𝑇 𝑝𝑖 − 𝑞𝑖
2
 for all the control points

Where 𝑤𝑖 =
1

𝑝𝑖−𝑣 2𝛼
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Image Deformation Using Moving Least Squares. Schaefer et al. SIGGRAPH 2006

𝑣: current pixel

𝛼: hyper-parameters

𝑝𝑖: source control points 

𝑞𝑖: target control points 



Moving Least Square
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Moving Least Square
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Programming Project #1

Prokudin-Gorskii’s Color Photography (1907)
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Credit: Berkeley CS194-26 



Programming Project #1

64

Credit: Berkeley CS194-26 



Programming Project #1

• How to compare R,G,B channels?

• No right answer

• Sum of Squared Differences (SSD):

• Normalized Correlation (NCC):
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Credit: Berkeley CS194-26 



Thank You!

16-726, Spring 2025
https://learning-image-synthesis.github.io/
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© Rachel Albert

https://learning-image-synthesis.github.io/
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